
Tutorial: UML State Machines and Nao 

Jérémie TATIBOUET, Shuai LI and François TERRIER 

 

Purpose 
This lab is divided into two exercises. These exercises will help you to understand the basics about the 

usage of UML state machines to specify system behaviors. 

Lab N°1 – Nao First Application 

Objectives 
1. Learn how to use states and transitions. 

2. Learn how to use triggers to react on received events.   

Setup 
1. Import the project “Lab1-HelloWorldApplication-Student.zip” into your workspace.  

2. Open the composite structure diagram “HelloWorldSystem”. 

Project Description 

Structure 

 

Figure 1 - Application Structure 

The application is composed of two parts typed with actives classes: HelloWorldApp and LoudSpeaker. 

Parts can communicates through the connector linking ports pLoudSpeaker and spTextToSpeech. 

These ports are typed by interfaces that identify messages (operation calls and signals) that may be 

passed from one part to another. In this configuration, the operation say is required by pLoudSpeaker. 

This implies that the part owning the port at the other end of the connector shall provide an 

implementation for the operation say. Hence, LoudSpeaker implements that operation and makes sure 

that when such operation call is received the message that is passed as the parameter to operation is 

read and emitted through Nao’s loud speaker. 

Behavior 
HelloWorldApp and LoudSpeaker are active. Hence they shall have an attached classifier behavior.  

The HelloWorldApp classifier behavior has the role to send a call to the operation say to the classifier 

behavior of the LoudSpeaker. When such a call is received by the LoudSpeaker, the message passed 

as parameter to the operation is displayed in the console.  



Expectations 

 

Figure 2 - Nao Audio Application 

You must implement the above the specification given by the interaction model depicted in Figure 2. 

1. The classifier of HelloWorldApp shall be implemented as an activity. This activity shall call in a 

synchronous way the operation say. The operation call shall be emitted through the port 

owned by the class HelloWorldApp. 

2. The classifier of LoudSpeaker shall be implemented as state machine. This state machine shall 

provide sufficient information to react upon the reception of a call event for the operation say. 

As a response to the call the state machine shall display the message passed as parameter to 

the operation call.  

3. The model shall be executable. Any model that is not executable will not be reviewed. 

  



Lab N°2 – Grab Red Ball Application 

Objectives 
1. Learn to jointly use state machines and activities. 

2. Apply what you have learn on state machines and activities to design a complete application 

enabling Nao to search for red ball and grab it. 

Setup 
1. Import the project “Lab2-GrabRedBallApplication-Student.zip”. 

2. Open the composite structure diagram “GrabRedBallSystem”. 

Project Description 

 

Figure 3 - Grab Red Ball Application 

Structure 
The system “GrabRedBallSystem”, is composed of four parts:  

1. Tracker 

­ This component enables Nao to track a specific object in a 3D space. It can receive 

messages from the simulator and send messages to the controller. 

2. MotionModule 



­ This component enables Nao to move in 3D space. It can receive commands from the 

controller. These commands specify the movements that shall be performed by Nao. 

3. LoudSpeaker 

­ This component enables Nao to express himself through its audio device. Messages 

to be emitted through the device are specified by the controller. 

4. Controller 

­ This component is the main one of our application. It controls lower level applications 

such as the tracker, the speaker as well as the tactile sensors. 

5. Simulator 

­ This components emulates the environment of our Nao application. It is typically 

responsible to emulates human interactions with Nao sensors as well as the presence 

of objects to track. 

Behavior 
All classes (Tracker, MotionModule, LoudSpeaker, Controller and Simulator) involved in this 

application are active. This imply they all have a classifier behavior. 

1. Tracker 

­ The tracker can receive ObjectDetected signals. Such signal have one property that 

identify the type of object detected in the 3D space. When such object is received a 

check is performed on the type of an object. If this object is a red ball then a 

RedBallDetected signal is sent to the controller. 

2. MotionModule 

­ The motion module can receive goToPosture, openHand and closeHand operation 

calls. When such call are received then now actuators are used to make the physical 

structure of the robot moves 

3. Controller 

­ The controller can receive TactileSensorPressed signals from the simulator and 

RedBallDetected signals from the tracker. TactileSensorPressed signal enables the 

receiver to identify the sensor that was pressed. Nao typically has sensors on both 

hands and head. When Nao head is touched then the tracking of the red ball starts. 

Tracking continues until the red ball is detected. When detected, the controller makes 

Nao to open his right hand to grab the ball. The ball is grabbed by Nao when it closes 

its right hand. This hand can only be closed if the sensor on its right hand is touched. 

4. Simulator 

­ The simulator sends TactileSensorPressed signals to the controller. These signals have 

the role to emulate a stimulation of the head and right hand sensors. The simulator 

also emulates the presence of objects in front of Nao by sending to the tracker 

ObjectDetected signals.  

Expectations 
Based on the aforementioned description of the structure and the behavior of the system you must 

implement: 

1. The classifier behavior of the Tracker as a state machine. 

2. The classifier behavior of the MotionModule as a state machine. 

3. The classifier behavior of the Controller as a state machine. 

4. The classifier behavior of the Simulator as an activity. 

5. The model shall be executable. Any model that is not executable will not be reviewed. 



Instructions to hand back your lab 
The report (as a PDF) and the models are due by November 20th, 2017. 

­ Both artefacts will be sent to jeremie.tatibouet@cea.fr and David.Roussel@ensiie.fr  

­ Please zip your report and your model in an archive “LAB2-FIRSTNAME-LASTNAME.zip”. 

Any file that does not match this pattern will not be reviewed. 

mailto:jeremie.tatibouet@cea.fr
mailto:David.Roussel@ensiie.fr

